Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
BMC Microbiol ; 24(1): 118, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575865

RESUMO

Q fever, a worldwide-occurring zoonotic disease, can cause economic losses for public and veterinary health systems. Vaccines are not yet available worldwide and currently under development. In this regard, it is important to produce a whole cell antigen, with preserved structural and antigenic properties and free of chemical modifications. Thus, inactivation of Coxiella burnetii with ultraviolet light C (UVC) was evaluated. C. burnetii Nine Mile phase I (NMI) and phase II (NMII) were exposed to decreasing intensities in a time-dependent manner and viability was tested by rescue cultivation in axenic medium or cell culture. Effects on the cell structure were visualized by transmission electron microscopy and antigenicity of UVC-treated NMI was studied by immunization of rabbits. NMI and NMII were inactivated at UVC intensities of 250 µW/cm2 for 5 min or 100 µW/cm2 for 20 min. Reactivation by DNA repair was considered to be unlikely. No morphological changes were observed directly after UVC inactivation by transmission electron microscopy, but severe swelling and membrane degradation of bacteria with increasing severity occurred after 24 and 48 h. Immunization of rabbits resulted in a pronounced antibody response. UVC inactivation of C. burnetii resulted in a structural preserved, safe whole cell antigen and might be useful as antigen for diagnostic purposes or as vaccine candidate.


Assuntos
Coxiella burnetii , Febre Q , Vacinas , Animais , Coelhos , Febre Q/microbiologia
2.
Vet Microbiol ; 292: 110063, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554598

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is an ESKAPE pathogen that can quickly develop resistance to most antibiotics. This bacterium is a zoonotic pathogen that can be found in humans, animals, foods, and environmental samples, making it a One-Health concern. P. aeruginosa threatens the poultry industry in Egypt, leading to significant economic losses. However, the investigation of this bacterium using NGS technology is nearly non-existent in Egypt. In this study, 38 isolates obtained from broiler farms of the Delta region were phenotypically investigated, and their genomes were characterized using whole genome sequencing (WGS). The study found that 100% of the isolates were resistant to fosfomycin and harbored the fosA gene. They were also resistant to trimethoprim/sulfamethoxazole, although only one isolate harbored the sul1 gene. Non-susceptibility (resistant, susceptible with increased dose) of colistin was observed in all isolates. WGS analysis revealed a high level of diversity between isolates, and MLST analysis allocated the 38 P. aeruginosa isolates into 11 distinct sequence types. The most predominant sequence type was ST267, found in 13 isolates, followed by ST1395 in 8 isolates. The isolates were susceptible to almost all tested antibiotics carrying only few different antimicrobial resistance (AMR) genes. Various AMR genes that confer resistance mainly to ß-lactam, aminoglycoside, sulfonamide, and phenicol compounds were identified. Additionally, several virulence associated genes were found without any significant differences in number and distribution among isolates. The majority of the virulence genes was identified in almost all isolates. The fact that P. aeruginosa, which harbors several AMR and virulence-associated factors, is present in poultry farms is alarming and threatens public health. The misuse of antimicrobial compounds in poultry farms plays a significant role in resistance development. Thus, increasing awareness and implementing strict veterinary regulations to guide the use of veterinary antibiotics is required to reduce health and environmental risks. Further studies from a One-Health perspective using WGS are necessary to trace the potential transmission routes of resistance between animals and humans and clarify resistance mechanisms.


Assuntos
Aves Domésticas , Infecções por Pseudomonas , Humanos , Animais , Aves Domésticas/genética , Pseudomonas aeruginosa/genética , Virulência/genética , Fazendas , Tipagem de Sequências Multilocus/veterinária , Egito/epidemiologia , Galinhas/microbiologia , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma/veterinária , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/veterinária , Fatores de Virulência/genética
3.
Vet Sci ; 10(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38133216

RESUMO

Contagious bovine genital campylobacteriosis (BGC), also known as bovine venereal campylobacteriosis, is a disease relevant to international trade listed by the World Organization for Animal Health (WOAH). It is caused by Campylobacter fetus subsp. venerealis (Cfv), one of three subspecies of Campylobacter fetus. Bulls are the reservoir but BGC may also be spread by artificial insemination (AI). BGC is characterized by severe reproductive losses such as infertility, early embryonic death and abortion with considerable economic losses. This significant economic impact has prompted several countries to adopt stringent eradication and surveillance measures to contain the disease. While there are commercial and autologous vaccines available, scientific evidence for the effectiveness of vaccination is still lacking. In Germany, BCG was already found to be endemic in the 1920s, shortly after the agent and the disease had been described for the first time. It can be assumed that BCG had already circulated uncontrolled for a long time in the predecessor states of Germany, influenced only by the political situation and trading networks of the time. After WW II, BCG was eradicated in the German Democratic Republic due to industrialized cattle production based on AI but it was still endemic at low levels in the Federal Republic of Germany with its diverse cattle production. There has been a steady decline in BGC incidence in re-unified Germany over the past 28 years. A single genetic Cfv lineage was identified which probably emerged in the 19th century and diversified over time. Interestingly, no recurrent cross-border introduction became evident. This review gives insight into the history of bovine genital campylobacteriosis considering the structural change in cattle farming in Germany and reflecting on the political background of the time.

5.
Front Microbiol ; 14: 1216850, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692386

RESUMO

Background: Bovine mastitis is a common disease of dairy cattle causing major economic losses due to reduced yield and poor quality of milk worldwide. The current investigation aimed to gain insight into the genetic diversity, antimicrobial resistance profiles and virulence associated factors of Staphylococcus (S.) aureus isolated from clinical bovine mastitis in dairy farms in Thuringia, Germany. Methods: Forty Staphylococcus aureus isolates collected from clinical bovine mastitis cases from 17 Thuringian dairy farms were phenotyped and genetically characterized using whole genome sequencing. Results: Out of 40 S. aureus, 30 (75%) were confirmed as methicillin resistant isolates. The isolates showed elevated antimicrobial resistance against penicillin, tetracycline and oxacillin, i.e., 77.5, 77.5, and 75%, respectively. Lower resistance rates were found against moxifloxacin, ciprofloxacin, gentamicin and trimethoprim/sulfamethoxazole, i.e., 35, 35, 30, and 22.5%, respectively. While resistance against clindamycin and erythromycin was rarely found (5 and 2.5%, respectively). All isolates were susceptible to linezolid, teicoplanin, vancomycin, tigecycline, fosfomycin, fusidic acid and rifampicin. These isolates were further allocated into five different sequence types: ST398 (n = 31), ST1074 (n = 4), ST504 (n = 3), ST582 (CC15) (n = 1) and ST479 (n = 1). These isolates were also assigned to seven clusters with up to 100 SNP which has facilitated geographical mapping and epidemiological distribution in Thuringia. Strains belonging to ST398 were classified into clusters 1, 2, 3, 4 and 7. The isolates of ST504 were of cluster 5, those of ST1074 were belonging to cluster 6. Resistance genes blaZ, blaI and blaR associated with penicillin resistance were found in 32 (80%) strains, all except one were belonging to ST398. Methicillin resistance associated mecA was identified in 30 (96.8%) isolates of ST398. All tetracycline and erythromycin resistant isolates were of ST398, and all harbored both tetM and ermA. About 90.3% of tetracycline resistant isolates assigned to ST398 were also carrying tetK gene. The point mutations parC_S80F, gyrA_S84L and parC_S80Y in gyrA and parC associated with quinolone resistance were found in all phenotypically resistant isolates to ciprofloxacin and moxifloxacin (n = 14). Sixty-eight virulence genes were identified among isolates. Both lukD/E and lukM/F-PV-P83 were identified in 22.5% of isolates, all were non-ST398. Conclusion: In this study, ST398 had the highest potential to cause disease and had a massive prevalence in bovine mastitis cases. Five different sequence types and seven clusters were identified in the federal state of Thuringia. The circulation of some clusters in the same region over several years shows the persistence of cluster-associated infection despite the intensive veterinary care. On the other hand, some regions had different clusters at the same year or in different consecutive years. Different sequence types and associated different clusters of S. aureus were geographically widely distributed among dairy farms in Thuringia. The findings of this study show that various clusters have the potential to spread over a large geographical scale. The detection of LA-MRSA on dairy farms, which is known for cabapility to widely spread among different groups of animals, humans and their environment urges for the implementation of national wide strategic programs. The identification of CA-MRSA among the isolates such as ST398 poses a significant risk for the transmission of such strains between animals and humans on dairy farms.

6.
Front Vet Sci ; 10: 1195274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576834

RESUMO

Abortion is one of the leading causes of economic losses in the livestock industry worldwide. Chlamydia abortus, Coxiella burnetii, and Brucella spp. are the leading cause of late fetal loss in small ruminants. This study determined the seroprevalence of these agents in small ruminants in district Jhang. A total of 385 serum samples were taken from the sheep and goats from different flocks with a history of abortion and subjected to i-ELISA. Further, samples were analysed for liver enzymes and total serum protein using a semi-automated chemistry analyzer. The result of indirect commercial ELISA showed 13.0, 4.2 and 11.2% prevalence for Coxiella burnetii, Chlamydia abortus, and Brucella spp., respectively. Values of different serum parameters (ALT, AST, and total protein) of seropositive animals were also determined. There was a significant rise in AST and ALT values of infected animals (p ≤ 0.05). Total protein decreased for all three infections, but a significant drop was noted in Brucella positive sheep serum samples. Various risk factors were studied. Binary logistic regression proved a significant role of ticks for coxiellosis and brucellosis. Age, parity, and species did not impact the prevalence of diseases studied.

7.
BMC Infect Dis ; 23(1): 529, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580676

RESUMO

BACKGROUND: Brucellosis is a zoonotic disease whose causative agent, Brucella spp., is endemic in many countries of the Mediterranean basin, including Greece. Although the occurrence of brucellosis must be reported to the authorities, it is believed that the disease is under-reported in Greece, and knowledge about the genomic diversity of brucellae is lacking. METHODS: Thus, 44 Brucella isolates, primarily B. melitensis, collected between 1999 and 2009 from humans and small ruminants in Greece were subjected to whole genome sequencing using short-read technology. The raw reads and assembled genomes were used for in silico genotyping based on single nucleotide substitutions and alleles. Further, specific genomic regions encoding putative virulence genes were screened for characteristic nucleotide changes, which arose in different genotype lineages. RESULTS: In silico genotyping revealed that the isolates belonged to three of the known sublineages of the East Mediterranean genotype. In addition, a novel subgenotype was identified that was basal to the other East Mediterranean sublineages, comprising two Greek strains. The majority of the isolates can be assumed to be of endemic origin, as they were clustered with strains from the Western Balkans or Turkey, whereas one strain of human origin could be associated with travel to another endemic region, e.g. Portugal. Further, nucleotide substitutions in the housekeeping gene rpoB and virulence-associated genes were detected, which were characteristic of the different subgenotypes. One of the isolates originating from an aborted bovine foetus was identified as B. abortus vaccine strain RB51. CONCLUSION: The results demonstrate the existence of several distinct persistent Brucella sp. foci in Greece. To detect these and for tracing infection chains, extensive sampling initiatives are required.


Assuntos
Brucella melitensis , Brucelose , Humanos , Animais , Bovinos , Brucella melitensis/genética , Grécia/epidemiologia , Tipagem de Sequências Multilocus , Filogenia , Brucelose/epidemiologia , Brucelose/veterinária , Genótipo , Sequenciamento Completo do Genoma
8.
Antibiotics (Basel) ; 12(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37508245

RESUMO

Acinetobacter baumannii (A. baumannii) is a highly problematic pathogen with an enormous capacity to acquire or upregulate antibiotic drug resistance determinants. The genomic epidemiology and resistome structure of 46 A. baumannii clinical isolates were studied using whole-genome sequencing. The isolates were chosen based on reduced susceptibility to at least three classes of antimicrobial compounds and were initially identified using MALDI-TOF/MS, followed by polymerase chain reaction amplification of blaOXA-51-like genes. The susceptibility profiles were determined using a broth microdilution assay. Multi-, extensive-, and pan-drug resistance was shown by 34.8%, 63.0%, and 2.2% of the isolates, respectively. These were most susceptible to colistin (95.7%), amikacin, and trimethoprim/sulfamethoxazole (32.6% each), while only 26.1% of isolates were susceptible to tigecycline. In silico multi-locus sequence typing revealed 8 Pasteur and 22 Oxford sequence types (STs) including four novel STs (STOxf 2805, 2806, 2807, and 2808). The majority of the isolates belonged to Global Clone (GC) 2 (76.4%), GC5 (19.6%), GC4 (6.5%), GC9 (4.3%), and GC7 (2.2%) lineages. An extensive resistome potentially conferring resistance to the majority of the tested antimicrobials was identified in silico. Of all known carbapenem resistance genes, blaOXA-23 was carried by most of the isolates (69.6%), followed by ISAba1-amplified blaADC (56.5%), blaNDM-1 and blaGES-11 (21.7% each), and blaGES-35 (2.2%) genes. A significant correlation was found between carbapenem resistance and carO mutations, which were evident in 35 (76.0%) isolates. A lower proportion of carbapenem resistance was noted for strains possessing both blaOXA-23- and blaGES-11. Amikacin resistance was most probably mediated by armA, aac(6')-Ib9, and aph(3')-VI, most commonly coexisting in GC2 isolates. No mutations were found in pmrABC or lpxACD operons in the colistin-resistant isolates. Tigecycline resistance was associated with adeS (N268Y) and baeS (A436T) mutations. While the lineage-specific distribution of some genes (e.g., blaADC and blaOXA-51-like alleles) was evident, some resistance genes, such as blaOXA-23 and sul1, were found in all GCs. The data generated here highlight the contribution of five GCs in A. baumannii infections in Egypt and enable the comprehensive analysis of GC-specific resistomes, thus revealing the dissemination of the carbapenem resistance gene blaOXA-23 in isolates encompassing all GCs.

9.
Microorganisms ; 11(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37317268

RESUMO

Anthrax is an acute infectious zoonotic disease caused by Bacillus anthracis that mostly affects grazing livestock and wildlife. Furthermore, B. anthracis is considered one of the most important biological agents of bioterrorism that could also be potentially misused in biological weapons. The distribution of anthrax in domestic animals and wildlife in Europe with a particular focus on Ukraine as a country of war was analyzed. Between 2005 and 2022, 267 anthrax cases were registered at the World Organization of Animal Health (WOAH) in animals in Europe, including 251 cases in domestic animals and 16 in wildlife. The highest numbers of cases were recorded in 2005 and 2016 followed by 2008, and the highest numbers of registered cases were reported from Albania, Russia, and Italy. In Ukraine, anthrax is currently a sporadic infection. Since 2007, 28 notifications were registered, with isolates mainly from soil samples. The highest number of confirmed anthrax cases was registered in 2018, and Odesa, which is close to Moldova, had the highest number of cases, followed by the Cherkasy region. The presence of thousands of biothermal pits and burial grounds of fallen cattle nationwide favors the re-emergence of new foci. Most confirmed cases were in cattle; however, single cases were confirmed in dogs, horses, and pigs. Further investigation of the disease in wildlife and in environmental samples is needed. The genetic analysis of isolates, investigation of susceptibility to antimicrobial compounds, and determination of virulence and pathogenicity factors are required in this volatile region of the world for awareness raising and preparedness.

10.
BMC Microbiol ; 23(1): 164, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312043

RESUMO

BACKGROUND: Salmonella infections remain an important public health issue worldwide. Some serovars of non-typhoidal Salmonella (NTS) have been associated with bloodstream infections and gastroenteritis, especially in children in Sub-Saharan Africa with circulating S. enterica serovars with drug resistance and virulence genes. This study identified and verified the clonal relationship of Nigerian NTS strains isolated from humans, animals, and the environment. METHODS: In total, 2,522 samples were collected from patients, animals (cattle and poultry), and environmental sources between December 2017 and May 2019. The samples were subjected to a standard microbiological investigation. All the isolates were identified using Microbact 24E, and MALDI-TOF MS. The isolates were serotyped using the Kauffmann-White scheme. Antibiotic susceptibility testing was conducted using the disc diffusion method and the Vitek 2 compact system. Virulence and antimicrobial resistance genes, sequence type, and cluster analysis were investigated using WGS data. RESULTS: Forty-eight (48) NTS isolates (1.9%) were obtained. The prevalence of NTS from clinical sources was 0.9%, while 4% was recorded for animal sources. The serovars identified were S. Cotham (n = 17), S. Give (n = 16), S. Mokola (n = 6), S. Abony (n = 4), S. Typhimurium (n = 4), and S. Senftenberg (n = 1). All 48 Salmonella isolates carried intrinsic and acquired resistant genes such as aac.6…Iaa, mdf(A), qnrB, qnrB19 genes and golT, golS, pcoA, and silP, mediated by plasmid Col440I_1, incFIB.B and incFII. Between 100 and 118 virulence gene markers distributed across several Salmonella pathogenicity islands (SPIs), clusters, prophages, and plasmid operons were found in each isolate. WGS revealed that strains of each Salmonella serovar could be assigned to a single 7-gene MLST cluster, and strains within the clusters were identical strains and closely related as defined by the 0 and 10 cgSNPs and likely shared a common ancestor. The dominant sequence types were S. Give ST516 and S. Cotham ST617. CONCLUSION: We found identical Salmonella sequence types in human, animal, and environmental samples in the same locality, which demonstrates the great potential of the applied tools to trace back outbreak strains. Strategies to control and prevent the spread of NTS in the context of one's health are essential to prevent possible outbreaks.


Assuntos
Salmonella enterica , Febre Tifoide , Criança , Humanos , Animais , Bovinos , Sorogrupo , Salmonella enterica/genética , Nigéria/epidemiologia , Tipagem de Sequências Multilocus , Óperon
11.
Antibiotics (Basel) ; 12(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37237837

RESUMO

The increasing incidence of extended-spectrum ß-lactamase (ESBL)-producing Escherichia (E.) coli in backyard chicken farming in Pakistan is of serious concern. This study aimed to assess the prevalence, antimicrobial resistance patterns and risk factors associated with ESBL avian pathogenic E. coli (APEC) isolated from backyard chickens in the Jhang district, Punjab, Pakistan. In total, 320 cloacal swabs were collected from four breeds of backyard chicken (Aseel, Golden, Misri and Necked Neck). ESBL E. coli were phenotypically identified using double disc synergy test (DDST) and corresponding genes were confirmed by multiplex polymerase chain reaction (mPCR). Out of the 320 samples, 164 (51.3%) were confirmed as E. coli, while 74 (45.1%) were characterized as ESBL E. coli. The frequency of isolation of ESBL E. coli was highest in Aseel chickens (35.1%). Of the 164 confirmed E. coli, 95.1%, 78.6%, 76.8%, 71.3%, 70.1%, 68.9%, 60.4% and 57.3% were resistant against tylosin, doxycycline, cefotaxime, enrofloxacin, colistin, trimethoprim/sulfamethoxazole, chloramphenicol and gentamicin, respectively. The ESBL gene types detected and their corresponding proportions were blaCTX-M (54.1 %, 40/74), blaTEM, (12.2%, 9/74) and co-existence (blaCTX-M and blaTEM) were shown in 33.8% (25/74). The blaCTX-M gene sequence showed homology to blaCTX-M-15 from clinical isolates. The mean multiple antibiotic resistance index (MARI) was found to be higher among ESBL E. coli (0.25) when compared to non-ESBL E. coli (0.17). Both free-range husbandry management system (p = 0.02, OR: 30.00, 95% CI = 1.47-611.79) and high antimicrobial usage in the last 6 months (p = 0.01, OR: 25.17, 95% CI = 1.81-348.71) were found significantly associated with isolation of ESBL-producing E. coli in the tested samples using binary logistic regression analysis. This study confirmed the potential of backyard chickens as a reservoir for ESBL E. coli in the Jhang district, Punjab, Pakistan.

12.
Front Vet Sci ; 10: 1092179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875995

RESUMO

Campylobacter (C.) jejuni is a zoonotic bacterium of public health significance. The present investigation was designed to assess the epidemiology and genetic heterogeneity of C. jejuni recovered from commercial turkey farms in Germany using whole-genome sequencing. The Illumina MiSeq® technology was used to sequence 66 C. jejuni isolates obtained between 2010 and 2011 from commercial meat turkey flocks located in ten German federal states. Phenotypic antimicrobial resistance was determined. Phylogeny, resistome, plasmidome and virulome profiles were analyzed using whole-genome sequencing data. Genetic resistance markers were identified with bioinformatics tools (AMRFinder, ResFinder, NCBI and ABRicate) and compared with the phenotypic antimicrobial resistance. The isolates were assigned to 28 different sequence types and 11 clonal complexes. The average pairwise single nucleotide-polymorphisms distance of 14,585 SNPs (range: 0-26,540 SNPs) revealed a high genetic distinction between the isolates. Thirteen virulence-associated genes were identified in C. jejuni isolates. Most of the isolates harbored the genes flaA (83.3%) and flaB (78.8%). The wlaN gene associated with the Guillain-Barré syndrome was detected in nine (13.6%) isolates. The genes for resistance to ampicillin (bla OXA), tetracycline [tet(O)], neomycin [aph(3')-IIIa], streptomycin (aadE) and streptothricin (sat4) were detected in isolated C. jejuni using WGS. A gene cluster comprising the genes sat4, aph(3')-IIIa and aadE was present in six isolates. The single point mutation T86I in the housekeeping gene gyrA conferring resistance to quinolones was retrieved in 93.6% of phenotypically fluoroquinolone-resistant isolates. Five phenotypically erythromycin-susceptible isolates carried the mutation A103V in the gene for the ribosomal protein L22 inferring macrolide resistance. An assortment of 13 ß-lactam resistance genes (bla OXA variants) was detected in 58 C. jejuni isolates. Out of 66 sequenced isolates, 28 (42.4%) carried plasmid-borne contigs. Six isolates harbored a pTet-like plasmid-borne contig which carries the tet(O) gene. This study emphasized the potential of whole-genome sequencing to ameliorate the routine surveillance of C. jejuni. Whole-genome sequencing can predict antimicrobial resistance with a high degree of accuracy. However, resistance gene databases need curation and updates to revoke inaccuracy when using WGS-based analysis pipelines for AMR detection.

13.
Antibiotics (Basel) ; 12(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36671289

RESUMO

Little is known about zoonotic pathogens and their antimicrobial resistance in South American camelids (SAC) in Germany including Clostridioides (C.) difficile. The aim of this study was to investigate prevalence, molecular characteristics and antimicrobial resistance of C. difficile in SAC. Composite SAC faecal samples were collected in 43 husbandries in Central Germany and cultured for C. difficile. Toxinotyping and ribotyping was done by PCR. Whole genome sequencing was performed with Illumina® Miseq™. The genomes were screened for antimicrobial resistance determinants. Genetic relatedness of the isolates was investigated using core genome multi locus sequence typing (cgMLST) and single nucleotide polymorphism analysis. Antimicrobial susceptibility testing was done using the Etest® method. Eight C. difficile isolates were recovered from seven farms. The isolates belonged to different PCR ribotypes. All isolates were toxinogenic. cgMLST revealed a cluster containing isolates recovered from different farms. Seven isolates showed similar resistance gene patterns. Different phenotypic resistance patterns were found. Agreement between phenotypic and genotypic resistance was identified only in some cases. Consequently, SAC may act as a reservoir for C. difficile. Thus, SAC may pose a risk regarding zoonotic transmission of toxinogenic, potentially human-pathogenic and resistant C. difficile isolates.

14.
Pathogens ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36678430

RESUMO

Brucellosis is a common zoonotic disease in Iran. Antimicrobial-resistant (AMR) Brucella isolates have been reported from different developing countries, posing an imminent health hazard. The objective of this study was to evaluate AMR and virulence-associated factors in Brucella isolates recovered from humans and animals in different regions of Iran using classical phenotyping and next generation sequencing (NGS) technology. Our findings revealed that B. melitensis is the most common species in bovines, small ruminants and camels. B. abortus was isolated only from one human case. Probable intermediate or resistant phenotype patterns for rifampicin, trimethoprim-sulfamethoxazole, ampicillin-sulbactam and colistin were found. Whole genome sequencing (WGS) identified mprF, bepG, bepF, bepC, bepE, and bepD in all isolates but failed to determine other classical AMR genes. Forty-three genes associated with five virulence factors were identified in the genomes of all Brucella isolates, and no difference in the distribution of virulence-associated genes was found. Of them, 27 genes were associated with lipopolysaccharide (LPS), 12 genes were related to a type IV secretion system (virB1-B12), two were associated with the toll-interleukin-1 receptor (TIR) domain-containing proteins (btpA, btpB), one gene encoded the Rab2 interacting conserved protein A (ricA) and one was associated with the production of cyclic ß-1,2 glucans (cgs). This is the first investigation reporting the molecular-based AMR and virulence factors in brucellae isolated from different animal hosts and humans in Iran. Iranian B. abortus and B. melitensis isolates are still in vitro susceptible to the majority of antibiotics used for the treatment of human brucellosis. WGS failed to determine classical AMR genes and no difference was found in the distribution of virulence-associated genes in all isolates. Still, the absence of classical AMR genes in genomes of resistant strains is puzzling, and investigation of phenotypic resistance mechanisms at the proteomic and transcriptomic levels is needed.

15.
One Health ; 16: 100483, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36632477

RESUMO

Brucellosis is one of the most common zoonoses in the Middle East. It is causing economic losses to the livestock industry and has a great public health concern. Little is known about the genetic diversity and distribution of brucellae in Iran. Therefore, forty Brucella spp. strains (B. abortus and B. melitensis) isolated from animals and humans were analyzed by whole genome sequencing (WGS) technology using single nucleotide polymorphism (SNP) analysis and core genome multilocus sequence typing (cgMLST). Brucella isolates were obtained from lymph nodes (cows and camels), milk (cows, camels and sheep), and aborted foetus samples (sheep and goats), as well as cerebrospinal fluid and blood of humans. The isolates were originating from thirteen provinces of Iran and isolated between 2015 and 2020. According to in-silico MLST, ST8 and ST2 were the most frequent sequence types in B. melitensis and B. abortus, respectively. Based on phylogeographic reconstruction using cgSNP analysis, the investigated Iranian B. melitensis strains belonged to the American and Mediterranean lineages of the B. melitensis phylogeny. Furthermore, cgSNP analysis revealed a similarity between Iranian B. abortus isolates and strains from Iraq and Egypt. Therefore, the origin of the Iranian strains can be suggested to be strains from neighboring and Middle East countries. Moreover, cgMLST analysis showed that the Iranian B. melitensis strains were closely relative to strains recovered from sheep and humans in Iraq, Afghanistan, Syria, Turkmenistan, and Pakistan. In the current panel of strains, cgMLST and cgSNP analysis provided an appropriate and accurate tool for effective traceback analyses for Brucella spp. from Iran. The results of cgSNP and cgMLST helped to understand the geographic distribution and interspecies transmission of Iranian strains and highlight the importance of specific brucellosis control measures in Iran with regard to the One-Health approach.

16.
Vet Microbiol ; 277: 109637, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586209

RESUMO

In the current study, 14 Brucella suis biovar 2 (B. suis bv 2) strains isolated from slaughter pigs in Cairo were sequenced using Illumina technology to investigate genetic diversity, antimicrobial resistance (AMR) genes, and virulence-associated determinants. These strains were the first B. suis bv 2 isolates from Egypt. To place them in a global context, 92 genomes of B. suis were retrieved from the NCBI database and used for comparison. The in-silico analysis of MLST showed that all isolates have ST16. No resistome but 43 virulomes have been found without differences in distribution. The cgMLST classified the Egyptian B. suis strains into a complex type (CT) encompassing four distinct cgMLST sequence types. The closest relatives were strain B. suis 94/11 of an unknown origin and a Danish strain. Whole-genome sequencing analysis proved low diversity of Egyptian B. suis isolates; thus, a single introduction event is assumed. Investigation of a large number of B. suis isolates from different governorates is required to tailor control measures to avoid further spread.


Assuntos
Brucella suis , Brucelose , Doenças dos Suínos , Suínos , Animais , Brucella suis/genética , Sus scrofa , Egito/epidemiologia , Brucelose/epidemiologia , Brucelose/veterinária , Tipagem de Sequências Multilocus/veterinária , Fatores de Virulência , Variação Genética , Doenças dos Suínos/epidemiologia
17.
Infect Dis Poverty ; 11(1): 120, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36482466

RESUMO

BACKGROUND: Brucellosis, a zoonosis mainly transmitted by consumption of unpasteurized dairy products as well as direct contact with infected animals, is endemic in Kyrgyzstan. However, Brucella species in humans have not been investigated and the origin of the disease remains poorly known in wide parts of Сentral Asia. Thus, molecular characterization of the circulating strains is a critical first step in understanding Brucella diversity in the country. METHODS: In this study, isolates were collected from patients with suspected brucellosis from different regions in Kyrgyzstan between 2019 and 2020. The detection and identification of Brucella was carried out by Bruce-ladder PCR. Next generation sequencing was used to sequence the 89 Brucella isolates, which were genotyped by cgSNP and cgMLST to identify epidemiological connection between Brucella isolates as well as placing them in the context of the global Brucella phylogeny. RESULTS: The Brucella strains isolated from all regions of Kyrgyzstan were identified as B. melitensis. Based on cgSNP analysis, 18 sequence types were differentiated. The highest numbers of different sequence types were found in Batken (n = 8), Osh (n = 8) and Jalal-Abad (n = 6) oblasts. According to cgSNP and cgMLST analyses, different B. melitensis lineages circulate in Kyrgyzstan, all of them belonging to the Eastern Mediterranean group of the global Brucella phylogeny with the highest similarity to strains from Turkmenistan, Iran and Turkey. CONCLUSION: In the present study, B. melitensis was identified as a causative agent of human brucellosis in Kyrgyzstan and different lineages could be identified. Since this study focused on isolates of human origin, the identity of Brucella species and lineages circulating among animal populations remains elusive. Implementing culture techniques and use of most recent molecular, bioinformatic and epidemiological tools are needed to set up a One Health approach to combat brucellosis in Kyrgyzstan. Further, other Сentral Asian countries need to take part in this effort as brucellosis is a transboundary disease in these regions.


Assuntos
Brucella melitensis , Humanos , Brucella melitensis/genética , Quirguistão/epidemiologia , Ásia , Biologia Computacional , Irã (Geográfico)
18.
Microorganisms ; 10(10)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36296246

RESUMO

Brucellosis is an important bacterial zoonosis of domestic and wildlife species. This disease has a significant public health concern and is characterized by reproductive failure resulting in economic losses in the livestock industry. Among thirteen known species, B. abortus, B. melitensis, B. suis, and B. canis are human pathogens. Brucellosis has been extensively investigated in humans and domestic animals. However, the situation in wildlife is still not completely reported and studied. Therefore, a systematic literature search and screening were done to clarify the situation of brucellosis in wildlife in Europe. Sixty-five articles from a total of 13,424 reports published between 1991 and 2021 were selected, applying defined inclusion criteria. Wild boars and brown hares were the most often studied terrestrial wildlife species, whereas seals and porpoises were the most often investigated marine wildlife. Poland, Croatia, and Belgium showed the highest seroprevalences of wild boars caused by B. suis biovar 2. In marine wildlife, brucellosis was mainly caused by B. ceti and B. pinnipedialis. Most samples were from carcasses. Thus, sera could not be collected. It is worrisome that B.abortus and B. melitensis were reported from both terrestrial and marine wild animals, posing a zoonotic threat to people exposed to wild animals. Currently, there is no approved vaccine available for wild animals. The main challenges are the development of specific diagnostics and their validation for use in wildlife.

19.
Microorganisms ; 10(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36013948

RESUMO

Q fever remains a neglected zoonosis in many developing countries including Pakistan. The causing agent Coxiella (C.) burnetii is resistant to environmental factors (such as drying, heat and many disinfectants), resulting in a long-lasting infection risk for both human and animals. As the infection is usually asymptomatic, it mostly remains undiagnosed in animals until and unless adverse pregnancy outcomes occur in a herd. In humans, the infection leads to severe endocarditis and vascular infection in chronic cases. Limited data are available on molecular epidemiology and evolution of this pathogen, especially in ruminants. Genomic studies will help speculating outbreak relationships in this scenario. Likewise, pathogenesis of C. burnetii needs to be explored by molecular studies. Awareness programs and ensuring pasteurization of the dairy milk before human consumption would help preventing Q fever zoonosis.

20.
Antibiotics (Basel) ; 11(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36009944

RESUMO

Poultry is one of the most important reservoirs for zoonotic multidrug-resistant pathogens. The indiscriminate use of antimicrobials in poultry production is a leading factor for development and dissemination of antimicrobial resistance. This study aimed to describe the prevalence and antimicrobial resistance of E. coli isolated from healthy turkey flocks of different ages in Nile delta region, Egypt. In the current investigation, 250 cloacal swabs were collected from 12 turkey farms in five governorates in the northern Egypt. Collected samples were cultivated on BrillianceTM ESBL agar media supplemented with cefotaxime (100 mg/L). The E. coli isolates were identified using MALDI-TOF-MS and confirmed by a conventional PCR assay targeting 16S rRNA-DNA. The phenotypic antibiogram against 14 antimicrobial agents was determined using the broth micro-dilution method. DNA-microarray-based assay was applied for genotyping and determination of both, virulence and resistance-associated gene markers. Multiplex real-time PCR was additionally applied for all isolates for detection of the actual most relevant Carbapenemase genes. The phenotypic identification of colistin resistance was carried out using E-test. A total of 26 E. coli isolates were recovered from the cloacal samples. All isolates were defined as multidrug-resistant. Interestingly, two different E. coli strains were isolated from one sample. Both strains had different phenotypic and genotypic profiles. All isolates were phenotypically susceptible to imipenem, while resistant to penicillin, rifampicin, streptomycin, and erythromycin. None of the examined carbapenem resistance genes was detected among isolates. At least one beta-lactamase gene was identified in most of isolates, where blaTEM was the most commonly identified determinant (80.8%), in addition to blaCTX-M9 (23.1%), blaSHV (19.2%) and blaOXA-10 (15.4%). Genes associated with chloramphenicol resistance were floR (65.4%) and cmlA1 (46.2%). Tetracycline- and quinolone-resistance-associated genes tetA and qnrS were detected in (57.7%) and (50.0%) of isolates, respectively. The aminoglycoside resistance associated genes aadA1 (65.4%), aadA2 (53.8%), aphA (50.0%), strA (69.2%), and strB (65.4%), were detected among isolates. Macrolide resistance associated genes mph and mrx were also detected in (53.8%) and (34.6%). Moreover, colistin resistance associated gene mcr-9 was identified in one isolate (3.8%). The class 1 integron integrase intI1 (84.6%), transposase for the transposon tnpISEcp1 (34.6%) and OqxB -integral membrane and component of RND-type multidrug efflux pump oqxB (7.7%) were identified among the isolates. The existing high incidence of ESBL/colistin-producing E. coli identified in healthy turkeys is a major concern that demands prompt control; otherwise, such strains and their resistance determinants could be transmitted to other bacteria and, eventually, to people via the food chain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...